Traffic Exchange

Jul 5, 2011

dolly the sheep

Dolly the Sheep

Dolly the sheep may have been the world's most famous clone, but she was not the first. Cloning creates a genetically identical copy of an animal or plant. Many animals - including frogs, mice, and cows - had been cloned before Dolly. Plants are often cloned – taking a cutting produces a clone of the original plant. Human identical twins are also clones.

Dolly was the first mammal to be cloned from an adult cell, rather than an embryo. This was a major scientific achievement, but also raised ethical concerns.

Since 1996, when Dolly was born, other sheep have been cloned from adult cells, as have mice, rabbits, horses and donkeys, pigs, goats and cattle. In 2004 a mouse was cloned using a nucleus from an olfactory neuron, showing that the donor nucleus can come from a tissue of the body that does not normally divide.

How Dolly was cloned

Animal cloning from an adult cell is obviously much more complex and difficult than growing a plant from a cutting. So when scientists working at the Roslin Institute in Scotland produced Dolly, the only lamb born from 277 attempts, it was a major news story around the world.

To produce Dolly, the scientists used the nucleus of an udder cell from a six-year-old Finn Dorset white sheep. The nucleus contains nearly all the cell's genes. They had to find a way to 'reprogram' the udder cells - to keep them alive but stop them growing – which they achieved by altering the growth medium (the ‘soup’ in which the cells were kept alive). Then they injected the cell into an unfertilised egg cell which had had its nucleus removed, and made the cells fuse by using electrical pulses. The unfertilised egg cell came from a Scottish Blackface ewe. When the research team had managed to fuse the nucleus from the adult white sheep cell with the egg cell from the black-faced sheep, they needed to make sure that the resulting cell would develop into an embryo. They cultured it for six or seven days to see if it divided and developed normally, before implanting it into a surrogate mother, another Scottish Blackface ewe. Dolly had a white face.

From 277 cell fusions, 29 early embryos developed and were implanted into 13 surrogate mothers. But only one pregnancy went to full term, and the 6.6kg Finn Dorset lamb 6LLS (alias Dolly) was born after 148 days.

What happened to Dolly?

Dolly, lived a pampered existence at the Roslin Institute. She mated and produced normal offspring in the normal way, showing that such cloned animals can reproduce. Born on 5 July 1996, she was euthanased on 14 February 2003, aged six and a half. Sheep can live to age 11 or 12, but Dolly suffered from arthritis in a hind leg joint and from sheep pulmonary adenomatosis, a virus-induced lung tumour to which sheep raised indoors are prone. On 2 February 2003, Australia's first cloned sheep died unexpectedly at the age of two years and 10 months. The cause of death was unknown and the carcass was quickly cremated as it was decomposing.

Dolly’s chromosomes were a little shorter than those of other sheep, but in most other ways she was the same as any other sheep of her chronological age. However, her early ageing may reflect that she was raised from the nucleus of a 6-year old sheep. Study of her cells also revealed that the very small amount of DNA outside the nucleus, in the mitochondria of the cells, is all inherited from the donor egg cell, not from the donor nucleus like the rest of her DNA. So she is not a completely identical copy. This finding could be important for sex-linked diseases such as haemophilia, and certain neuromuscular, brain and kidney conditions that are passed on through the mother's side of the family only.

Why clone sheep?

Dolly the sheep, was produced at the Roslin Institute as part of research into producing medicines in the milk of farm animals. Researchers have managed to transfer human genes that produce useful proteins into sheep and cows, so that they can produce, for instance, the blood clotting agent factor IX to treat haemophilia or alpha-1-antitrypsin to treat cystic fibrosis and other lung conditions.

The development of cloning technology has led to new ways to produce medicines and is improving our understanding of development and genetics.

Source: animalresearch